Archivo de la categoría: óptica

La foto 51 – Del patrón de difracción a la estructura del ADN

001

Esta es la foto 51, una foto tomada por Rosalind Franklin y su ayudante Raymond Gosling con la que se pudo discernir el secreto de la estructura del ADN.  El modelo fue propuesto por Watson y Crick gracias a que tuvieron acceso a esta foto en una jugada un tanto criticable.

Esta entrada tiene por objeto describir cómo se puede deducir la estructura del ADN, una doble hélice, a partir de esa foto.  La historia asociada no deja de ser interesantísima y es una obligación dedicar unos minutos a conocerla y a homenajear a la mujer que la hizo posible, Rosalind Franklin.  Os dejo un vídeo donde se hace un breve esbozo de su vida y obra:

Y aquí el vídeo de lo que vamos a desarrollar en esta entrada, la deducción de la estructura del ADN a partir de la foto 51:

Si al acabar esta entrada crees que molaría tener un detalle con este vuestro humilde autor me conformaría con tener vuestro voto en los premios bitácoras para el podcast @Los3_Chanchitos.  Este es un podcast de ciencia y cultura en general (3chanchitos.es), con mejor o peor humor, del que formo parte.  Si deseas votar en señal de infinita gratitud solo tienes que pulsar aquí abajo:

Votar en los Premios Bitacoras.com

Basta de peticiones, vayamos al lío.

Sigue leyendo

Adaptarse o morir, el sino de la óptica

sinadaptacion

La cuestión de la adaptación tiene múltiples aplicaciones.  En biología la adaptación al ambiente es lo que condiciona la supervivencia de los individuos y de las especies a las que pertenecen. No hay que ser el más fuerte, hay que ser el mejor adaptado. Pero no solo en biología se da esta circunstancia, por lo visto, esta regla es de aplicación general.

En esta entrada quiero hablar de un tema que me parece hermoso en muchos sentidos.  Primero, porque representa un problema que, a primera vista, parece insalvable, como tantos otros en ciencia. Segundo, porque la solución es bella, es simple y supone un triunfo de nuestro entendimiento de la naturaleza y de nuestra habilidad técnica.  Voy a hablar de óptica, especialmente aplicada a astronomía, sigue leyendo porque la cosa es extremadamente bonita.

Sigue leyendo

La polarización y la cuántica en Órbita Laika

El amigo Antonio Martínez Ron @aberron ha jugado con polarizadores en Órbita Laika.  Y ha mostrado un maravilloso efecto que aparece cuando superpones tres de esos bichos.  Aquí la explicación cuántica 🙂

La luz está compuesta por fotones y estos fotones tienen una característica que se denomina helicidad (que es el análogo del espín, lo que pasa es que en partículas sin masa se usa la otra palabra por cuestiones técnicas, esto solo lo digo por información). Esto es el origen de la polarización de la luz.

Los polarizadores son materiales que solo dejan pasar luz polarizada de una determinada manera. Sigue leyendo para empaparte del tema 🙂

Helicidad del fotón

Lo primero, representaremos un fotón

foton

Los fotones son partículas que se mueven siempre a la velocidad de la luz (como no puede ser de otra manera porque son las partícula de luz) cuando están en el vacío y aproximadamente en el aire.

fotonmovimiento

El fotón tiene una helicidad (espín) que podemos considerarlo pedestremente como una oscilación alrededor de la dirección de movimiento.

Si vemos un fotón venir hacia nosotros los estados de helicidad básicos serían vertical y horizontal respecto a su dirección de movimiento y nuestra línea de observación:

helicidad

Esto se puede representar de la siguiente forma:

|Fotón Vertical>                         |Fotón Horizontal>

polarizacionvertical

Ahora ponemos un polarizador en disposición vertical respecto a la dirección de movimiento de la luz incidente:

polvertfoton

El resultado es que todos los fotones pasan sin problemas.

Si giramos el polarizador 90º el resultado, como y sabes, es que no pasa ningún fotón. Se bloquea la luz.

bloqueohorizontal

Pasaría lo mismo si empezamos con luz polarizada horizontalmente. Si el polarizador está vertical no pasa luz y si está horizontal deja pasar toda esa luz.

El juego de los dos polarizadores

Hasta ahora hemos hablado solo de dos estados de helicidad/polarización de los fotones, el vertical y el horizontal. Y hemos visto como dichos estados son excluyentes en el sentido de que solo pasan cuando el polarizador está en la dirección correcta.

Sin embargo, en la luz natural, los fotones no tienen helicidades solamente verticales u horizontales, pueden tenerla en cualquier dirección respecto a su dirección de movimiento:

nopolarizada

Si ahora pones un polarizador en cualquier dirección en la dirección de movimiento de esa luz seleccionarás la luz polarizada en esa dirección:

Por simplicidad hemos puesto el polarizador en vertical pero lo podríamos haber puesto en cualquier dirección que hubieramos querido. El resultado es que solo pasa la luz que tenga fotones con la helicidad/polarización en dicha dirección.

polarizacion1

Si ahora pones un segundo polarizador en una dirección perpendicular (horizontal en este caso) toda la luz se bloquea:

polarizacion2

Lo maravilloso de la cuántica

La cuántica tiene la insana costumbre de responder cuando se le pregunta. ¿Eso qué quiere decir?

Si ahora ponemos un polarizador entre los dos anteriores girado 45º respecto de sus respectivas direcciones encontramos que sale luz por el último polarizador. ¿Eso cómo puede ser?

Retomemos los casos anteriores:

  • Partimos de luz no polarizada.
  • Metemos un polarizador vertical y toda la luz que sale está polarizada verticalmente. Cada fotón tendrá un estado |Fotón Vertical>.

polarizacion1

  • Ahora ponemos un polarizador girado 45º respecto a este:

cuarentaycinco

¿Los fotones pasan o no pasan? La respuesta es que algunos pasan. Y es que nosotros le estamos preguntando a los fotones si están polarizados respecto a 45º de la dirección de salida del anterior polarizador. Los fotones que salen del mismo tienen el estado |Fotón Vertical>. Pero ahora le estamos preguntando sobre 45º respecto a la vertical, pero la cuántica nos dice que cada fotón –—– |Fotón Vertical> se puede escribir como una combinación:

|Fotón Vertical>= 50% |Fotón a 45º respecto a la vertical> + 50% |Fotón a -45º respecto a la vertical>

Que se interpreta como que cada fotón polarizado verticalmente tiene un 50% de pasar por un polarizador situado a 45º respecto de la dirección del primer polarizador.

Así que a la salida de dicho polarizador a 45º tendremos:

polarizacion3

Los fotones de salida tendrán un estado: |Fotón a 45º respecto a la vertical>. Y la intensidad de salida será la mitad de la del primero.

  • Si ahora colocamos un tercer polarizador perpendicular al primero, volvemos a tener lo mismo. Se encuentra con fotones cuyos estados son |Fotón a 45º respecto a la vertical>, pero nosotros le estamos preguntando sobre la polarización horizontal. Pero la cuántica nos dice que:

|Fotón a 45º respecto a la vertical>= 50% |Fotón Vertical> + 50% |Fotón Horizontal>

Por tanto hay un 50% de posibilidades de que pasen fotones por el polarizador horizontal.

polarizacion4

Y por eso sale luz al poner un polarizador a 45º entre dos polarizadores perpendiculares. De hecho, en condiciones ideales la luz que sale tiene una intensidad de salida que es un 25% de la intensidad que sale del primer polarizador.

Lo que yo remarcaría de este tema

a) La cuántica describe estados que se pueden reexpresar como combinaciones de otros estados. Por ejemplo:

|Fotón Vertical>= 50% |Fotón a 45º respecto a la vertical> + 50% |Fotón a -45º respecto a la vertical>

|Fotón a 45º respecto a la vertical>= 50% |Fotón Vertical> + 50% |Fotón Horizontal>

b) En dichas combinaciones la cuántica te dice con qué probabilidad veremos uno de los estados que forman parte de la combinación.

c) Cuando medimos, en este caso cuando ponemos el polarizador, de dichas combinaciones solo sobrevive un estado:

En el primer caso sobrevive |Fotón a 45º respecto de la vertical>

En el segundo caso sobrevive |Fotón Horizontal>

El estado combinado HA COLAPSADO a uno de sus constituyentes, y esto está relacionado con el gato de Schrödinger por si quieres comentarlo.

c) Posibilidades perpendiculares son excluyentes entre sí. Si tengo luz polarizada en la vertical no pasará por un polarizador horizontal y viceversa.

d) Esto que hemos hecho con direcciones verticales y horizontales se puede hacer en cualquier par de direcciones perpendiculares, y para el polarizador que metes entre esos dos que esté a 45º respecto a ellos. Vertical y horizontal no son determinantes, lo importante es que sean perpendiculares entre sí y que el otro, el que metes por medio, esté a 45º respecto a las direcciones de los dos anteriores.

Este experimento pone de manifiesto la propia estructura de la mecánica cuántica aunque hay que tener en cuenta varias cosas:

1.- Todo esto se puede explicar sin mecánica cuántica. Aunque la razón última sea totalmente cuántica se puede llegar a las mismas conclusiones en física clásica. Pero eso no quiere decir que la explicación sea incorrecta sino que aquí la cuántica no es del todo evidente. Pero sabemos que es así porque hemos acumulado resultados experimentales durante más de 100 años que se basan en esta explicación del comportamiento cuántico de la luz.  Y ahora tenemos experimentos de polarización con un fotón solo y eso no se puede explicar con la física clásica.

2.- Lo que hemos explicado de la polarización/helicidad de los fotones no es totalmente cierto, en realidad los polarizadores más usuales, con los que se han hecho estas pruebas en el programa, casi con toda seguridad son polarizadores circulares y no lineales que son con los que hemos usado en el ejemplo y los estados de helicidad serían circulares, algo así como si el fotón gira a izquierdas o a derechas respecto a su dirección de movimiento. Pero eso no es un problema porque siempre podemos traducir polarizaciones circulares a lineales (las que hemos usado) y viceversa.

Gracias a Órbita Laika por existir y ojalá nos acompañe mucho tiempo en nuestras pantallas.

Nos seguimos leyendo…

El universo no es un holograma

En los últimos días han aparecido muchos sitios que se han hecho eco de la noticia de que los cientifícos han demostrado que:

NUESTRO UNIVERSO ES UN HOLOGRAMA

Pues bien, eso no es lo que han demostrado los físicos involucrados en el trabajo que ha levantado el revuelo.

Los trabajos en cuestión son:

Quantum Near Horizon Geometry of Black 0-Brane

Holographic description of quantum black hole on a computer

Los artículos son extremadamente técnicos. Tienen cientos de ecuaciones entre los dos (literalmente). Y hacen muchas cosas chulas excepto la de demostrar que nuestro universo es un holograma.

Pero, ¿qué tienen que ver los hologramas con el universo? ¿Por qué el revuelo mediático?

En esta entrada vamos a intentar responder estas preguntas y aclarar lo que han demostrado los físicos de los que tanto se habla.

Una charla al respecto de esta entrada que di en el Bulebar (sí, con dos b’s):

http://cienciaenbulebar.wordpress.com/2013/12/18/cambio-de-planes/

Sigue leyendo

El fotón y la masa

Pedazo de calabaza.

El tema de la masa del fotón es muy controvertido. Es evidente que es difícil de tragar eso de que los fotones no tienen masa. En nuestra vida diaria estamos acostumbrados a que todo lo que nos rodea tiene masa y aceptar que haya algo sin ella no es trivial del todo.

¿Pero por qué narices se empeñan los físicos en repetir que el fotón no tiene masa?

¿Acaso el fotón no tiene energía? ¿Entonces no es válida la relación E=mc^2?

Estas son preguntas que se repiten una y otra vez y que son ciertamente complicadas de responder. Esta entrada, que se preveé árida, intentará dar los argumentos teóricos existentes para mostrar el por qué se dice que el fotón es una partícula sin masa.

Sigue leyendo