Archivo de la etiqueta: polarización

El caso de BICEP2. Así funciona la ciencia

Science Word Art

En marzo de 2014 hubo un gran revuelo porque el experimento BICEP2 dijo haber encontrado ondas gravitacionales procedentes del mismo origen del universo.

La cuestión no es nada trivial porque eso significaría que podríamos estudiar como era nuestro universo en su mismo origen y abría la puerta a una mejor comprensión del proceso de origen del universo y un espaldarazo final a la teoría cosmológica inflacionaria.  También se abría la puerta a empezar a tener un elemento para entender los procesos cuántico-gravitatorios que regían en el origen de nuestro universo.

En este blog y en muchos otros medios se escribió mucho sobre el tema. Pero si preguntamos hoy por ese resultado todos dirán que fue un error de medida y que no podemos asegurar que se hayan detectado tales ondas gravitatorias primordiales, las originadas en el origen del universo.

Me parece que a estas alturas tenemos la suficiente perspectiva y la suficiente tranquilidad como para analizar la situación.  Me parece también que es un gran ejemplo de como funciona la ciencia.  Creo que esta historia es un magnífico caso para exponer en los institutos y enseñar qué entendemos por pensamiento crítico, escepticismo científico y el modo en el que la ciencia opera.

Sigue leyendo

La polarización y la cuántica en Órbita Laika

El amigo Antonio Martínez Ron @aberron ha jugado con polarizadores en Órbita Laika.  Y ha mostrado un maravilloso efecto que aparece cuando superpones tres de esos bichos.  Aquí la explicación cuántica 🙂

La luz está compuesta por fotones y estos fotones tienen una característica que se denomina helicidad (que es el análogo del espín, lo que pasa es que en partículas sin masa se usa la otra palabra por cuestiones técnicas, esto solo lo digo por información). Esto es el origen de la polarización de la luz.

Los polarizadores son materiales que solo dejan pasar luz polarizada de una determinada manera. Sigue leyendo para empaparte del tema 🙂

Helicidad del fotón

Lo primero, representaremos un fotón

foton

Los fotones son partículas que se mueven siempre a la velocidad de la luz (como no puede ser de otra manera porque son las partícula de luz) cuando están en el vacío y aproximadamente en el aire.

fotonmovimiento

El fotón tiene una helicidad (espín) que podemos considerarlo pedestremente como una oscilación alrededor de la dirección de movimiento.

Si vemos un fotón venir hacia nosotros los estados de helicidad básicos serían vertical y horizontal respecto a su dirección de movimiento y nuestra línea de observación:

helicidad

Esto se puede representar de la siguiente forma:

|Fotón Vertical>                         |Fotón Horizontal>

polarizacionvertical

Ahora ponemos un polarizador en disposición vertical respecto a la dirección de movimiento de la luz incidente:

polvertfoton

El resultado es que todos los fotones pasan sin problemas.

Si giramos el polarizador 90º el resultado, como y sabes, es que no pasa ningún fotón. Se bloquea la luz.

bloqueohorizontal

Pasaría lo mismo si empezamos con luz polarizada horizontalmente. Si el polarizador está vertical no pasa luz y si está horizontal deja pasar toda esa luz.

El juego de los dos polarizadores

Hasta ahora hemos hablado solo de dos estados de helicidad/polarización de los fotones, el vertical y el horizontal. Y hemos visto como dichos estados son excluyentes en el sentido de que solo pasan cuando el polarizador está en la dirección correcta.

Sin embargo, en la luz natural, los fotones no tienen helicidades solamente verticales u horizontales, pueden tenerla en cualquier dirección respecto a su dirección de movimiento:

nopolarizada

Si ahora pones un polarizador en cualquier dirección en la dirección de movimiento de esa luz seleccionarás la luz polarizada en esa dirección:

Por simplicidad hemos puesto el polarizador en vertical pero lo podríamos haber puesto en cualquier dirección que hubieramos querido. El resultado es que solo pasa la luz que tenga fotones con la helicidad/polarización en dicha dirección.

polarizacion1

Si ahora pones un segundo polarizador en una dirección perpendicular (horizontal en este caso) toda la luz se bloquea:

polarizacion2

Lo maravilloso de la cuántica

La cuántica tiene la insana costumbre de responder cuando se le pregunta. ¿Eso qué quiere decir?

Si ahora ponemos un polarizador entre los dos anteriores girado 45º respecto de sus respectivas direcciones encontramos que sale luz por el último polarizador. ¿Eso cómo puede ser?

Retomemos los casos anteriores:

  • Partimos de luz no polarizada.
  • Metemos un polarizador vertical y toda la luz que sale está polarizada verticalmente. Cada fotón tendrá un estado |Fotón Vertical>.

polarizacion1

  • Ahora ponemos un polarizador girado 45º respecto a este:

cuarentaycinco

¿Los fotones pasan o no pasan? La respuesta es que algunos pasan. Y es que nosotros le estamos preguntando a los fotones si están polarizados respecto a 45º de la dirección de salida del anterior polarizador. Los fotones que salen del mismo tienen el estado |Fotón Vertical>. Pero ahora le estamos preguntando sobre 45º respecto a la vertical, pero la cuántica nos dice que cada fotón –—– |Fotón Vertical> se puede escribir como una combinación:

|Fotón Vertical>= 50% |Fotón a 45º respecto a la vertical> + 50% |Fotón a -45º respecto a la vertical>

Que se interpreta como que cada fotón polarizado verticalmente tiene un 50% de pasar por un polarizador situado a 45º respecto de la dirección del primer polarizador.

Así que a la salida de dicho polarizador a 45º tendremos:

polarizacion3

Los fotones de salida tendrán un estado: |Fotón a 45º respecto a la vertical>. Y la intensidad de salida será la mitad de la del primero.

  • Si ahora colocamos un tercer polarizador perpendicular al primero, volvemos a tener lo mismo. Se encuentra con fotones cuyos estados son |Fotón a 45º respecto a la vertical>, pero nosotros le estamos preguntando sobre la polarización horizontal. Pero la cuántica nos dice que:

|Fotón a 45º respecto a la vertical>= 50% |Fotón Vertical> + 50% |Fotón Horizontal>

Por tanto hay un 50% de posibilidades de que pasen fotones por el polarizador horizontal.

polarizacion4

Y por eso sale luz al poner un polarizador a 45º entre dos polarizadores perpendiculares. De hecho, en condiciones ideales la luz que sale tiene una intensidad de salida que es un 25% de la intensidad que sale del primer polarizador.

Lo que yo remarcaría de este tema

a) La cuántica describe estados que se pueden reexpresar como combinaciones de otros estados. Por ejemplo:

|Fotón Vertical>= 50% |Fotón a 45º respecto a la vertical> + 50% |Fotón a -45º respecto a la vertical>

|Fotón a 45º respecto a la vertical>= 50% |Fotón Vertical> + 50% |Fotón Horizontal>

b) En dichas combinaciones la cuántica te dice con qué probabilidad veremos uno de los estados que forman parte de la combinación.

c) Cuando medimos, en este caso cuando ponemos el polarizador, de dichas combinaciones solo sobrevive un estado:

En el primer caso sobrevive |Fotón a 45º respecto de la vertical>

En el segundo caso sobrevive |Fotón Horizontal>

El estado combinado HA COLAPSADO a uno de sus constituyentes, y esto está relacionado con el gato de Schrödinger por si quieres comentarlo.

c) Posibilidades perpendiculares son excluyentes entre sí. Si tengo luz polarizada en la vertical no pasará por un polarizador horizontal y viceversa.

d) Esto que hemos hecho con direcciones verticales y horizontales se puede hacer en cualquier par de direcciones perpendiculares, y para el polarizador que metes entre esos dos que esté a 45º respecto a ellos. Vertical y horizontal no son determinantes, lo importante es que sean perpendiculares entre sí y que el otro, el que metes por medio, esté a 45º respecto a las direcciones de los dos anteriores.

Este experimento pone de manifiesto la propia estructura de la mecánica cuántica aunque hay que tener en cuenta varias cosas:

1.- Todo esto se puede explicar sin mecánica cuántica. Aunque la razón última sea totalmente cuántica se puede llegar a las mismas conclusiones en física clásica. Pero eso no quiere decir que la explicación sea incorrecta sino que aquí la cuántica no es del todo evidente. Pero sabemos que es así porque hemos acumulado resultados experimentales durante más de 100 años que se basan en esta explicación del comportamiento cuántico de la luz.  Y ahora tenemos experimentos de polarización con un fotón solo y eso no se puede explicar con la física clásica.

2.- Lo que hemos explicado de la polarización/helicidad de los fotones no es totalmente cierto, en realidad los polarizadores más usuales, con los que se han hecho estas pruebas en el programa, casi con toda seguridad son polarizadores circulares y no lineales que son con los que hemos usado en el ejemplo y los estados de helicidad serían circulares, algo así como si el fotón gira a izquierdas o a derechas respecto a su dirección de movimiento. Pero eso no es un problema porque siempre podemos traducir polarizaciones circulares a lineales (las que hemos usado) y viceversa.

Gracias a Órbita Laika por existir y ojalá nos acompañe mucho tiempo en nuestras pantallas.

Nos seguimos leyendo…

La cosmología del oso polar

Acabo de publicar esta entrada:

El oso polar que vio el origen del universo

Donde se anuncia la publicación de un artículo que dice que el proyecto POLARBEAR ha obtenido medidas sobre la polarización de los modos B del fondo cósmico de microondas y eso dará mucha información sobre cosmología y sobre el proceso inflacionario.

Esta entrada la voy a dedicar a explicar lo que han medido estos señores y a reafirmar algunas de las cosas que he dicho en la anterior entrada, esta vez con un poco más de detalle.

Sigue leyendo

El universo saca Bicep2

Hoy ha habido una gran noticia acerca del universo. Así que es de recibo explicar por qué tal excitación.

Sin duda, el día de hoy pasará a la historia de la ciencia aunque no sea una confirmación definitiva ni la última del tema que vamos a tratar.

Nos vamos a plantear aquí el objetivo de hacer lo más entendible posible de qué va todo esto de la medida de los modos B de la radiación cósmica de fondo. Dado que el tema es muy importante y que me parece que todo el mundo tiene el derecho de saber, al menos un poco, de que trata todo esto, procuraré ser lo más conciso, simple y directo que pueda.

Espero que pueda transmitir por qué todo esto es tan importante.

El tema

Hoy se han hecho públicos los resultados del experimento BICEP2, que trataba de medir, entre otras cosas, la polarización de la radiación cósmica de fondo, especialmente los modos B.

Lo sé, todo esto no dice mucho y no deja ver por qué todo el mundo está tan excitado al respecto. Pero, permítanme hacer una lista sobre por qué pienso yo que la cosa tiene cierta relevancia.

  1. El resultado de hoy nos dice que el universo pasó por una expansión brutal, muy rápida al inicio de su existencia.
  2. También nos obliga a aceptar que no hubo una explosión de un huevo cósmico que lo contenía todo. Más bien el tema es que el universo surgió desde el vacío (cuántico) y que ese fenómeno dejó huellas en una radiación que nos llega hoy en día en forma de microondas.
  3. Además es una confirmación indirecta de la existencia de ondas gravitacionales.  Pero lo que es más, estas ondas gravitacionales surgieron por fluctuaciones cuánticas gravitatorias en los primerísimos instantes del universo.  Así pues, puede ser que estemos en la puerta de poder constreñir nuestras teorías de gravedad cuántica a través de observaciones sobre el fondo cósmico de microondas.

En esta entrada vamos a comentar todo esto de la forma más simple posible para que todos podamos disfrutar de las consecuencias del descubrimiento anunciado hoy.  Para una explicación más técnica os recomiendo la entrada de Francis:  BICEP2 obtiene la primera prueba directa de la inflación cósmica.  (Ahí podéis encontrar el artículo técnico relacionado:

La inflación cósmica. Expasión, vacío, existencia, multiverso

Se nos ha contado una y otra vez que el universo empezó en una gran explosión, el famoso Big Bang, la idea que nos lleva a esto es simple:

Si sabemos que el universo se está expandiendo, en el pasado todo estaría más cerca y más caliente  y tuvo que haber un tiempo en el que todo estaría contenido en un punto.  Este punto «estalló» dando lugar al universo que vemos que se ha expandido desde entonces.

Esta es la imagen que hemos acumulado por mucho tiempo, sin embargo, hay muchos problemas asociados con esta imagen:

a)  ¿Por qué todo estaba contenido en un punto? ¿Toda la materia? ¿Toda la radiación? ¿Todo?

b)  ¿Por qué tuvo que explotar?

c)  ¿Qué significa explotar si no podemos hablar ni de espacio ni de tiempo en esa situación? ¿Dónde explotó?

La imagen del big bang es muy sugestiva pero errónea. Si bien es cierto que nuestro universo se está expandiendo y que eso implica que antes estaba más comprimido y la materia y energía más caliente no podemos decir que todo estaba contenido en un punto. Eso no tiene sentido.  La materia que vemos ahora no se puede matener a partir de determinada temperatura, así que si todo estaba cada vez más cerca estaría cada vez más caliente y la materia/radiación que existiría no sería ni parecida a los que nos rodea hoy en día.

El modelo del big bang no es más que el nombre que recibe la teoría que explica como evoluciona el universo conforme se expande, pero no dice nada sobre su origen en sí mismo.  Para repasar: La historia caliente del universo.

Permitidme un resumen muy sesgado e incompleto sobre las que en mi opinión, son las ideas esenciales y comunes a la mayoría de los modelos cosmológicos actuales que tratan con el origen del universo.  Todos ellos se pueden enmarcar con el nombre de modelos inflacionarios.

Voy a itemizar y novelizar al tiempo 😉

1.-  Al principio fue el vacío.  Pero este vacío presenta unas características sorprendentes, sus propiedades exigen que este vacío se expanda de una forma brutal (expansión exponencial).  Si intentas pensar en la expansión de este vacío no tendrás ninguna experiencia al respecto, es decir, este vacío lo ocupa todo, así que… ¿Dónde se expande?  Pues en sí mismo, no hay nada fuera de él. Cuando hablamos de expansión nos referimos a que si tomamos tres puntos cualesquiera en dicho vacío observaremos como la distancia entre todos ellos aumentan con el tiempo, y aumenta  de forma exponencial (muy muy rápido). Una explicación análoga, aplicada a la expansión del universo, la tenéis aquí.

El universo está repleto de un vacío que se expande como loco. Está bajo un proceso inflacionario continuo.

El universo está repleto de un vacío que se expande como loco. Está bajo un proceso inflacionario continuo.

2.-  De vez en cuando, aquí y allá, en el seno de ese vacío, la inflación se aburre, se para, y hay regiones que dejan de expandirse tan brutalmente.  Debido a que en ese proceso se libera mucha energía, esta se transforma en materia.  Esas burbujas en las que la inflación se ha parado se siguen expandiendo a un ritmo mucho más lento que el vacío del que procede y en el que están inmersas.

Hay regiones que espontáneamente dejan de expandirse aceleradamente y pasan a una expansión más moderada. La energía del "freno" de la inflación se invierte en llenar esa burbuja de materia y radiación.

Hay regiones que espontáneamente dejan de expandirse aceleradamente y pasan a una expansión más moderada. La energía del «freno» de la inflación se invierte en llenar esa burbuja de materia y radiación.

3.-  Podemos considerar que nuestro universo es una burbuja que se rebeló contra el vacío, dejó de expandirse de forma exponencial y se llenó por esto de materia y radiación (incluyendo aquí energías y materias oscuras).  Este proceso se puede seguir dando y por lo tanto estos modelos se dicen que generan de forma natural multiversos, entendiendo aquí regiones que han dejado de ser inflacionarias. Esas burbujas, inmersas aún en un vacío que se expande inflacionariamente, no se sabe si pueden coincidir o no, lo natural es que no puedan tener contacto unas con otras.  Más aún, las leyes de la física no tienen, ni deben, de ser las mismas en distintas burbujas de este tipo. Las cargas, las masas, etc, de los campos y partículas pueden diferir de una burbuja (universo) a otra.

Este proceso de frenado de la inflación se puede seguir produciendo en el vacío circundante y generar más burbujas (universos) con diferentes conjuntos de leyes y magnitudes físicas.

Este proceso de frenado de la inflación se puede seguir produciendo en el vacío circundante y generar más burbujas (universos) con diferentes conjuntos de leyes y magnitudes físicas.

Así pues, nuestro universo sería una de estas burbujas que se han rebelado contra el vacío.

Centrándonos en nuestro universo

Vale, nuestro universo se generó así, espontáneamente de un vacío, frenando una expansión exponencial y generando así materia y radiación. ¿Podemos comprobar esto?

La respuesta es, sin lugar a dudas, sí.

Estos modelos predicen que la radiación cósmica de fondo ha de tener determinadas características generadas por este proceso.

Esta es la imagen de la radiación cósmica de fondo tomada por la misión PLANCK.

Esta es la imagen de la radiación cósmica de fondo tomada por la misión PLANCK.

Esta radiación cósmica de fondo se generó unos 300.000 años después del inicio de nuestro universo/burbuja. Son fotones que nos llegan desde todas las direcciones del cielo con una temperatura de alrededor de 2.7 Kelvins. (Bastante frío).  Y los modelos cosmológicos nos dicen que tienen que existir pequeñas, pequeñísimas variaciones de temperatura en esa radiación.  Esas pequeñas variaciones de temperatura son las diferencias de colores en los puntos de la radiación cósmica de fondo, diferencias muy pequeñas  muy difíciles de medir.  A lo largo del tiempo hemos ido midiendo mejor las propiedades de la radiación cósmica de fondo:

PIA16874-CobeWmapPlanckComparison-20130321Pero estos fotones de la radiación cósmica de fondo tienen otras características además de su energía/temperatura.  Los fotones se pueden asimilar a cosas ondulantes, y las ondas pueden ser polarizadas.   Que sean polarizadas significan que en su movimiento de propagación se mueven de una determinada manera, en un plano dado.

Aquí vemos el campo eléctrico (naranja) que está en el plano vertical. Y el campo magnético (azul) que está en el plano horizontal. Esta onda está polarizada.

También podemos tener polarizaciones llamadas circulares, estas polarizaciones hacen que las ondas vayan rotando alrededor de un eje.

Luz polarizada circularmente

Aquí hay que contestar a la siguiente pregunta, ¿cómo y por qué se polariza la radiación cósmica de fondo?

Pues hay que retrotraerse hasta el mismo inicio del universo. Cuando la inflación se frena el exceso de energía se transforma en «materia».  Es decir, aparecen los campos físicos, las partículas, etc. Por supuesto no aparecen de la forma en las que las tenemos ahora, las actuales son las herederas de las primigenias.  Sin embargo, en ese proceso de transformación de la energía sobrante de la expansión inflacionaria frenada en la burbuja en «materia» se producen fluctuaciones, en unas zonas hay más creación de materia que en otras. Esas fluctuaciones no son muy grandes, pero son importantísimas.  Y lo son porque esos procesos hacen que el propio espaciotiempo oscile y se creen ondas gravitatorias.  Dichas ondas son ondulaciones del espaciotiempo que se traslada por el mismo.

Un universo surcado por ondas gravitacionales primigenias.

Un universo surcado por ondas gravitacionales primigenias.

Estas ondas gravitacionales se denominan primigenias ya que se originaron al principio del universo por fenómenos puramente cuánticos que involucran la gravedad. Actualmente se pueden generar en sistemas estelares binarios y otros fenómenos astrofísicos. Estas ondas gravitacionales astrofísicas aún no han sido detectadas de forma directa aunque sí de forma indirecta.

¿Cómo se relacionan la inflación, las ondas gravitatorias primigenias y la polarización de la radiación cósmica de fondo?

Esta es la madre del cordero, (Querido lector, aquí uso cordero sin ninguna connotación religiosa), así que procuraré responderlo del mejor modo posible.

Interacción entre fotones y materia

Los fotones son los cuantos de la radiación electromagnética. Y el electromagnetismo se lleva bien con las cargas eléctricas, interactúan con ellas. Un fotón llega a un electrón, el electrón lo absorbe vibra y emite un fotón con una determinada polarización.

Aquí un fotón llega a un electrón, este lo absorbe, vibra en un determinada forma y emite un fotón que también vibra en la dirección definida por la oscilación del electrón. Resulta una radiación polarizada.

Cuando el universo tenía algo menos de 300.000 años de antigüedad, la temperatura era tan alta que los protones y electrones formados estaban  danzando por ahí como locos. La interacción eléctrica no podía generar átomos neutros. Por lo tanto, los fotones estaban «encarcelados» colisionando una y otra vez con los electrones libres.  Esto fue así hasta que el universo se expandió lo suficiente, y se enfrió por tanto, para que la energía del medio permitiera la formación de átomos neutros y los fotones salieron de allí en línea recta.  Esa es la radiación que hoy día vemos en el fondo cósmico de microondas.

Ahora bien, dado que teníamos por ahí ondas gravitacionales, estas estaban ondulando el espaciotiempo, y por tanto los electrones estaban sujetos a esas ondulaciones, y por lo tanto estaban transmitiendo esa vibración a los fotones que interactuaban con ellos polarizándolos de una determinada manera. (Manera que es predicha por los modelos inflacionarios).

De hecho, se conocen dos tipos de polarizaciones, la denominada E y la denominada B. La polarización de tipo E puede ser generada por otro tipos de procesos asociados a la materia presente en el universo además de las ondas gravitatoria. Sin embargo, la polarización de tipo B solo puede ser generada por dichas ondas gravitatorias.

Hay dos tipos de polarizaciones posibles, el tipo E y el tipo B. El tipo E puede ser generado por ondas gravitatorias y otros fenómenos asociados a la materia presente en el universo. La polarización de tipo B solo es generada por las ondas gravitacionales primigenias.  Encontrar esta polarización es, consecuentemente, una prueba de la existencia de estas ondas gravitatorias que a su vez están predichas por efectos cuánticos del universo en su origen.

Hay dos tipos de polarizaciones posibles, el tipo E y el tipo B. El tipo E puede ser generado por ondas gravitatorias y otros fenómenos asociados a la materia presente en el universo. La polarización de tipo B solo es generada por las ondas gravitacionales primigenias. Encontrar esta polarización es, consecuentemente, una prueba de la existencia de estas ondas gravitatorias que a su vez están predichas por efectos cuánticos del universo en su origen.

¿Qué quiere decir eso?

a)  Si medimos los modos B estamos midiendo una polarización de la luz del fondo cósmico que fue heredada de lo que sentían los electrones libres que estaban en el universo debido a las ondas gravitacionales primigenias.

b)  Dichas ondas gravitacionales primigenias son producto del proceso de fluctuación del espaciotiempo en el proceso inflacionario.  Los modelos inflacionarios predicen las características de dichas ondas gravitatorias que al final se traducen en características de los modos de polarización B del fondo cósmico de microondas.

Así podemos decir:

Al haber encontrado la polarización en modos B de la radiación cósmica de fondo hemos podido confirmar dos cosas:  a)  La existencia de ondas gravitatorias primigenias.  b) El mecanismo que predice esas ondas, la inflación (además de poder discernir entre distintos modelos inflacionarios que predicen distintos espectros de polarización en modos B)..

¿Qué podemos esperar?

1.-  Que los autores originales de la teoría inflacionaria, Andrei Linde y Alan Guth, ganen algún premio 🙂

2.-  Que aprendamos más cosas de la tan buscada teoría de la gravedad cuántica ya que hasta la fecha no teníamos ninguna evidencia experimental que ayudara en su definición y su búsqueda. Ahora tenemos la oportunidad de que las teorías de la gravedad cuántica puedan testearse con su capacidad para producir inflación y predecir el correcto espectro de polarización en modos B.

3.-  Se necesitan más y mejores datos sobre estos modos B y seguro que en breve la misión europea PLANCK confirmará y mejorará los resultados hoy presentados.

4.-  Hemos aprendido un poco más sobre el origen mismo del universo, cada vez es más claro que nuestro universo, y todos los posibles universos, son préstamos que nos hace el vacío.

Espero haber podido transmitir un poco la importancia de este hallazgo. No me cabe la menor duda, de que nos esperan tiempos espectaculares en física en un futuro muy cercano.

Permitidme terminar con esta reflexión

Nos seguimos leyendo…

Planck, no compres sin Thom ni son…

Hoy se han hecho públicos algunos de los resultados de la misión Planck sobre el fondo cósmico de microondas o radiación cósmica de fondo (CBR).

Aquí hemos hecho un resumen de los resultados:

Planck hablando del universo

En el blog de Francis han hablado de ello en dos interesantísimas entradas:

Los datos del telescopio espacial Planck de la ESA sobre el fondo cósmico de microndas

Una explicación para la anomalía del fondo cósmico de microondas observada por Planck

También hay una excelente entrada en el blog Conexión Causal:

¿Qué es la radiación de fondo de microondas?

En esta entrada lo que se pretende es explicar que los datos interesantes que puede ofrecer Planck, aparte de los que ya ha ofrecido que han venido a confirmar la imagen de universo que teníamos con mayor precisión, tardarán un año en estar disponibles.  Estos datos se basan en algo que se conoce como polarización del fondo de microondas. Explicaremos por qué esto es importante y por qué es tan dificil de determinar.

Así que tendremos que esperar un poco más para poder disfrutar de toda la potencia de la misión Planck.

Sigue leyendo